
Corrigé de l'examen II de SVT

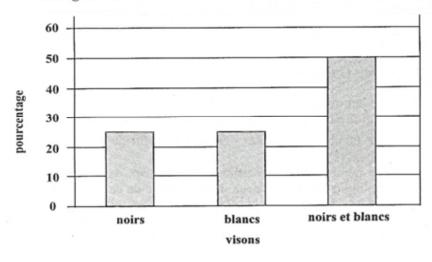
Exercice I

- 1. a. Les molécules constituant l'amidon du blé sont les molécules de glucose.
 - b. La réaction est l'hydrolyse ou simplification moléculaire.
 - c. Les enzymes catalysent ou accélèrent la réaction d'hydrolyse. Elles restent intactes à la fin de l'expérience.
- 2. L'amylase. $T^0: 37^0C$ pH = 7 pour l'amylase salivaire et pH = 11 pour l'amylase pancréatique

Titre : schéma représentant la simplification de l'amidon

Exercice II

1. 1 : veine cave supérieure2 : oreillette droite3 : ventricule droit4 : artère pulmonaire5 : valvules sigmoïdes6 : valvuletricuspide


- 2. Il s'agit de la systole ventriculaire, car la valvule tricuspide est fermée et les valvules sigmoïdes sont ouvertes donc le sang est propulsé du ventricule droit dans l'artère pulmonaire.
- 3. La phase qui suit est la diastole générale. Durant cette phase le cœur est au repos, le myocarde est relâché.
- 4. La partie de l'ECG qui correspond à la systole ventriculaire est QRST.
- 5. Systole auriculaire: 0.1 sec Systole ventriculaire: 0.4 0.1 = 0.3 sec

Exercice III

- Comme tous les visons obtenus en F₁ sont à pelage noir et blanc, un nouveau phénotype est formé et les deux allèles se sont également exprimés, on peut dire qu'il s'agit d'un cas de monohybridisme à codominance.
- Symboles des allèles : B : blanc N : noir
 Génotypes des parents de F₁ blanc : BB noir : NN
 Génotype de F₁ : BN

4. Echelle

Histogramme montrant les résultats obtenus en F2 (1.5 pt)

Exercice IV

1.

Temps	T_0	T_1	T ₂ .	T_3
Quantité d'acides aminés radioactifs (en %)	100	75	50	25
Quantité d'hémoglobine radioactive (en %)	0 2	25	50	75

Tableau montrant les variations des quantités d'hémoglobine radioactive et d'acides aminés radioactifs en fonction du temps. (2 pts)

- 2. Problème posé est : Quels sont les éléments nécessaires à la synthèse ou la fabrication de toute protéine dans les cellules ?
- 3. La quantité d'acides aminés radioactifs qui était 100% à T₀, dans le milieu de culture, a diminué et atteint 25% à T₃, celle de l'hémoglobine radioactive était de 0 % à T₀, a augmenté et a atteint 75% à T₃. De même, la quantité d'énergie consommée augmente, ce qui nous permet de dire que la fabrication d'une protéine nécessite un apport d'acides aminés et de l'énergie.